4-Bit Democomputer Befehlssatz

IT

Unterricht / Fach

Datum:

Klasse: Name:

Programmierung

Der Democomputer arbeitet ein Programm ab, das im ROM gespeichert ist. Ein ROM-Wort ist 4 Bit breit, das heißt es sind 2⁴ = ____ Zustände pro Wort möglich. Dies entspricht auch genau dem implementierten Befehlssatz, der aus 16 Befehlen besteht. Im Democomputer wird zwischen ____ - und Zweiwort befehlen unterschieden:

- **Einwortbefehl**: Benötigt keine Argumente.
- Zweiwortbefehl: Benötigt noch ein Argument (Datenwort oder Adresse), welches an der dem Befehl folgenden Adresse im ROM stehen muss

MITTE

<u> </u>	<u> </u>	<u> </u>	→			
Mnemonic	Code	Anz. Worte	CPU- Zyklen	Beschreibung		
Datentransferbefehle:						
MVI R0	0100	2	8	unmittelbar folgendes Wort in Register 0		
MVI R1	0101	2	8	Unmittelbar folgendes Wort in Register 1		
STO R0	0000	2	10	Register 0 in RAM; <u>2. Wort RAM-Adresse</u>		
STO R1	0001	2	10	Register 1 in RAM, <u>2. Wort RAM-Adresse</u>		
LD R0	0010	2	10	RAM in Register 0; 2. Wort RAM-Adresse		
LD R1	0011	2	10	RAM in Register 1; 2. Wort RAM-Adresse		
MOV R1,R0	1001	1	5	Register 0 in Register 1 kopieren		
MOV R0,R1	1010	1	5	Register 1 in Register 0 kopieren		
Input-/Outputbefehle:						
IN	1000	1	7	Input-Port in Register 0		
OUT	1011	1	7	Register 0 in Output-Port		
Arithmetische Befehle:						
ADD R1	1101	1	5	Register 1 + Register 0 (ohne carry), Resultat in R0		
Rotationsbefe	Rotationsbefehle:					
ASL	1110	1	5	Register 0 links schieben, Überlauf in carry		
RAR	1111	1	5	R0 rechts schieben, LSB in carry		
Sprungbefehle:						
LMP	0110	2	8	Sprung zu ROM-Adresse in 2. Wort		
JC	0111	2	8	Sprung zu ROM-Adresse in 2. Wort wenn carry = 1		
JNC	1111	2	8	Sprung zu ROM-Adresse in 2. Wort wenn carry = 0		

COMPUTERSYSTEME

4-Bit Democomputer Befehlssatz

IT	
Interricht /	Fack

		Unterricht / Fach
asse:	Name:	Datum:

Adressierung Ram

Die RAM-Adressen im Democomputer sind 16-19. Diese Adressen lassen sich nicht mit 4 Bit abbilden und können folglich im ROM nicht als Argument übergeben werden. Deshalb gelten für RAM-Adressen im ROM folgende Regeln:

• 0000 - 0011 entsprechen den RAM-Adressen 16 - 19

Umrechnungstabelle von dualen Zahlen in dezimale Zahlen

4 Bit:	23	2^{2}	2^1	2^{0}			
		1	1	0	1	=	$8 + 4 + 0 + 1 = 13 _{dez}$

Binärzahl	Umrechnung	Dezimal
0000		
0001		
0010		
0011		
0100		
0101		
0110	0+4+2+0=6	6
0111		
1000		
1001		
1010		
1011		
1100		
1101		
1110		
1111		

MITTE